Serveur d'exploration sur Mozart

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Impact of climate change on the future chemical composition of the global troposphere

Identifieur interne : 000149 ( PascalFrancis/Corpus ); précédent : 000148; suivant : 000150

Impact of climate change on the future chemical composition of the global troposphere

Auteurs : Guy P. Brasseur ; Martin Schultz ; Claire Granier ; Marielle Saunois ; Thomas Diehl ; Michael Botzet ; Erich Roeckner ; Stacy Walters

Source :

RBID : Pascal:06-0480247

Descripteurs français

English descriptors

Abstract

A global chemical transport model of the atmosphere [the Model for Ozone and Related Tracers, version 2 (MOZART-2)] driven by prescribed surface emissions and by meteorological fields provided by the ECHAM5/Max Planck Institute Ocean Model (MPI-OM-1) coupled atmosphere-ocean model is used to assess how expected climate changes (2100 versus 2000 periods) should affect the chemical composition of the troposphere. Calculations suggest that ozone changes resulting from climate change only are negative in a large fraction of the troposphere because of enhanced photochemical destruction by water vapor. In the Tropics, increased lightning activity should lead to larger ozone concentrations. The magnitude of the climate-induced ozone changes in the troposphere remains smaller than the changes produced by enhanced anthropogenic emissions when the Special Report on Emission Scenarios (SRES) A2P is adopted to describe the future evolution of these emissions. Predictions depend strongly on future trends in atmospheric methane levels, which are not well established. Changes in the emissions of NOx by bacteria in soils and of nonmethane hydrocarbons by vegetation associated with climate change could have a significant impact on future ozone levels.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0894-8755
A03   1    @0 J. clim.
A05       @2 19
A06       @2 16
A08 01  1  ENG  @1 Impact of climate change on the future chemical composition of the global troposphere
A11 01  1    @1 BRASSEUR (Guy P.)
A11 02  1    @1 SCHULTZ (Martin)
A11 03  1    @1 GRANIER (Claire)
A11 04  1    @1 SAUNOIS (Marielle)
A11 05  1    @1 DIEHL (Thomas)
A11 06  1    @1 BOTZET (Michael)
A11 07  1    @1 ROECKNER (Erich)
A11 08  1    @1 WALTERS (Stacy)
A14 01      @1 Max Planck Institute for Meteorology @2 Hamburg @3 DEU @Z 1 aut. @Z 2 aut. @Z 3 aut. @Z 4 aut. @Z 5 aut. @Z 6 aut. @Z 7 aut.
A14 02      @1 National Center for Atmospheric Research @2 Boulder, Colorado @3 USA @Z 8 aut.
A20       @1 3932-3951
A21       @1 2006
A23 01      @0 ENG
A43 01      @1 INIST @2 9644B @5 354000133590630090
A44       @0 0000 @1 © 2006 INIST-CNRS. All rights reserved.
A45       @0 1 p.3/4
A47 01  1    @0 06-0480247
A60       @1 P
A61       @0 A
A64 01  1    @0 Journal of climate
A66 01      @0 USA
C01 01    ENG  @0 A global chemical transport model of the atmosphere [the Model for Ozone and Related Tracers, version 2 (MOZART-2)] driven by prescribed surface emissions and by meteorological fields provided by the ECHAM5/Max Planck Institute Ocean Model (MPI-OM-1) coupled atmosphere-ocean model is used to assess how expected climate changes (2100 versus 2000 periods) should affect the chemical composition of the troposphere. Calculations suggest that ozone changes resulting from climate change only are negative in a large fraction of the troposphere because of enhanced photochemical destruction by water vapor. In the Tropics, increased lightning activity should lead to larger ozone concentrations. The magnitude of the climate-induced ozone changes in the troposphere remains smaller than the changes produced by enhanced anthropogenic emissions when the Special Report on Emission Scenarios (SRES) A2P is adopted to describe the future evolution of these emissions. Predictions depend strongly on future trends in atmospheric methane levels, which are not well established. Changes in the emissions of NOx by bacteria in soils and of nonmethane hydrocarbons by vegetation associated with climate change could have a significant impact on future ozone levels.
C02 01  2    @0 001E02D10
C02 02  2    @0 001E02F
C03 01  2  FRE  @0 Changement planétaire @5 01
C03 01  2  ENG  @0 global change @5 01
C03 01  2  SPA  @0 Cambio planetario @5 01
C03 02  2  FRE  @0 Modification climat @5 02
C03 02  2  ENG  @0 climate modification @5 02
C03 03  2  FRE  @0 Troposphère @5 03
C03 03  2  ENG  @0 troposphere @5 03
C03 04  3  FRE  @0 Chimie atmosphérique @5 04
C03 04  3  ENG  @0 Atmospheric chemistry @5 04
C03 05  2  FRE  @0 Ozone @5 05
C03 05  2  ENG  @0 ozone @5 05
C03 05  2  SPA  @0 Ozono @5 05
C03 06  X  FRE  @0 Modèle prévision @5 06
C03 06  X  ENG  @0 Forecast model @5 06
C03 06  X  SPA  @0 Modelo previsión @5 06
C03 07  X  FRE  @0 Siècle 21eme @5 07
C03 07  X  ENG  @0 Century 21st @5 07
C03 07  X  SPA  @0 Siglo 21 @5 07
C03 08  2  FRE  @0 Simulation numérique @5 08
C03 08  2  ENG  @0 digital simulation @5 08
C03 08  2  SPA  @0 Simulación numérica @5 08
C03 09  3  FRE  @0 Modèle circulation générale @5 09
C03 09  3  ENG  @0 General circulation models @5 09
C03 10  3  FRE  @0 Modèle atmosphère océan @5 10
C03 10  3  ENG  @0 Ocean-atmosphere model @5 10
C03 11  X  FRE  @0 Emission polluant @5 11
C03 11  X  ENG  @0 Pollutant emission @5 11
C03 11  X  SPA  @0 Emisión contaminante @5 11
C03 12  X  FRE  @0 Facteur anthropique @5 12
C03 12  X  ENG  @0 Anthropogenic factor @5 12
C03 12  X  SPA  @0 Factor antrópico @5 12
C03 13  X  FRE  @0 Facteur biogène @5 13
C03 13  X  ENG  @0 Biogenic factor @5 13
C03 13  X  SPA  @0 Factor biógeno @5 13
C03 14  X  FRE  @0 Climatologie dynamique @5 31
C03 14  X  ENG  @0 Dynamical climatology @5 31
C03 14  X  SPA  @0 Climatología dinámica @5 31
C03 15  2  FRE  @0 Modèle ECHAM5 @4 INC @5 46
N21       @1 317

Format Inist (serveur)

NO : PASCAL 06-0480247 INIST
ET : Impact of climate change on the future chemical composition of the global troposphere
AU : BRASSEUR (Guy P.); SCHULTZ (Martin); GRANIER (Claire); SAUNOIS (Marielle); DIEHL (Thomas); BOTZET (Michael); ROECKNER (Erich); WALTERS (Stacy)
AF : Max Planck Institute for Meteorology/Hamburg/Allemagne (1 aut., 2 aut., 3 aut., 4 aut., 5 aut., 6 aut., 7 aut.); National Center for Atmospheric Research/Boulder, Colorado/Etats-Unis (8 aut.)
DT : Publication en série; Niveau analytique
SO : Journal of climate; ISSN 0894-8755; Etats-Unis; Da. 2006; Vol. 19; No. 16; Pp. 3932-3951; Bibl. 1 p.3/4
LA : Anglais
EA : A global chemical transport model of the atmosphere [the Model for Ozone and Related Tracers, version 2 (MOZART-2)] driven by prescribed surface emissions and by meteorological fields provided by the ECHAM5/Max Planck Institute Ocean Model (MPI-OM-1) coupled atmosphere-ocean model is used to assess how expected climate changes (2100 versus 2000 periods) should affect the chemical composition of the troposphere. Calculations suggest that ozone changes resulting from climate change only are negative in a large fraction of the troposphere because of enhanced photochemical destruction by water vapor. In the Tropics, increased lightning activity should lead to larger ozone concentrations. The magnitude of the climate-induced ozone changes in the troposphere remains smaller than the changes produced by enhanced anthropogenic emissions when the Special Report on Emission Scenarios (SRES) A2P is adopted to describe the future evolution of these emissions. Predictions depend strongly on future trends in atmospheric methane levels, which are not well established. Changes in the emissions of NOx by bacteria in soils and of nonmethane hydrocarbons by vegetation associated with climate change could have a significant impact on future ozone levels.
CC : 001E02D10; 001E02F
FD : Changement planétaire; Modification climat; Troposphère; Chimie atmosphérique; Ozone; Modèle prévision; Siècle 21eme; Simulation numérique; Modèle circulation générale; Modèle atmosphère océan; Emission polluant; Facteur anthropique; Facteur biogène; Climatologie dynamique; Modèle ECHAM5
ED : global change; climate modification; troposphere; Atmospheric chemistry; ozone; Forecast model; Century 21st; digital simulation; General circulation models; Ocean-atmosphere model; Pollutant emission; Anthropogenic factor; Biogenic factor; Dynamical climatology
SD : Cambio planetario; Ozono; Modelo previsión; Siglo 21; Simulación numérica; Emisión contaminante; Factor antrópico; Factor biógeno; Climatología dinámica
LO : INIST-9644B.354000133590630090
ID : 06-0480247

Links to Exploration step

Pascal:06-0480247

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Impact of climate change on the future chemical composition of the global troposphere</title>
<author>
<name sortKey="Brasseur, Guy P" sort="Brasseur, Guy P" uniqKey="Brasseur G" first="Guy P." last="Brasseur">Guy P. Brasseur</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Max Planck Institute for Meteorology</s1>
<s2>Hamburg</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Schultz, Martin" sort="Schultz, Martin" uniqKey="Schultz M" first="Martin" last="Schultz">Martin Schultz</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Max Planck Institute for Meteorology</s1>
<s2>Hamburg</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Granier, Claire" sort="Granier, Claire" uniqKey="Granier C" first="Claire" last="Granier">Claire Granier</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Max Planck Institute for Meteorology</s1>
<s2>Hamburg</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Saunois, Marielle" sort="Saunois, Marielle" uniqKey="Saunois M" first="Marielle" last="Saunois">Marielle Saunois</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Max Planck Institute for Meteorology</s1>
<s2>Hamburg</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Diehl, Thomas" sort="Diehl, Thomas" uniqKey="Diehl T" first="Thomas" last="Diehl">Thomas Diehl</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Max Planck Institute for Meteorology</s1>
<s2>Hamburg</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Botzet, Michael" sort="Botzet, Michael" uniqKey="Botzet M" first="Michael" last="Botzet">Michael Botzet</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Max Planck Institute for Meteorology</s1>
<s2>Hamburg</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Roeckner, Erich" sort="Roeckner, Erich" uniqKey="Roeckner E" first="Erich" last="Roeckner">Erich Roeckner</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Max Planck Institute for Meteorology</s1>
<s2>Hamburg</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Walters, Stacy" sort="Walters, Stacy" uniqKey="Walters S" first="Stacy" last="Walters">Stacy Walters</name>
<affiliation>
<inist:fA14 i1="02">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">06-0480247</idno>
<date when="2006">2006</date>
<idno type="stanalyst">PASCAL 06-0480247 INIST</idno>
<idno type="RBID">Pascal:06-0480247</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000149</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Impact of climate change on the future chemical composition of the global troposphere</title>
<author>
<name sortKey="Brasseur, Guy P" sort="Brasseur, Guy P" uniqKey="Brasseur G" first="Guy P." last="Brasseur">Guy P. Brasseur</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Max Planck Institute for Meteorology</s1>
<s2>Hamburg</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Schultz, Martin" sort="Schultz, Martin" uniqKey="Schultz M" first="Martin" last="Schultz">Martin Schultz</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Max Planck Institute for Meteorology</s1>
<s2>Hamburg</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Granier, Claire" sort="Granier, Claire" uniqKey="Granier C" first="Claire" last="Granier">Claire Granier</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Max Planck Institute for Meteorology</s1>
<s2>Hamburg</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Saunois, Marielle" sort="Saunois, Marielle" uniqKey="Saunois M" first="Marielle" last="Saunois">Marielle Saunois</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Max Planck Institute for Meteorology</s1>
<s2>Hamburg</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Diehl, Thomas" sort="Diehl, Thomas" uniqKey="Diehl T" first="Thomas" last="Diehl">Thomas Diehl</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Max Planck Institute for Meteorology</s1>
<s2>Hamburg</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Botzet, Michael" sort="Botzet, Michael" uniqKey="Botzet M" first="Michael" last="Botzet">Michael Botzet</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Max Planck Institute for Meteorology</s1>
<s2>Hamburg</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Roeckner, Erich" sort="Roeckner, Erich" uniqKey="Roeckner E" first="Erich" last="Roeckner">Erich Roeckner</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Max Planck Institute for Meteorology</s1>
<s2>Hamburg</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Walters, Stacy" sort="Walters, Stacy" uniqKey="Walters S" first="Stacy" last="Walters">Stacy Walters</name>
<affiliation>
<inist:fA14 i1="02">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal of climate</title>
<title level="j" type="abbreviated">J. clim.</title>
<idno type="ISSN">0894-8755</idno>
<imprint>
<date when="2006">2006</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal of climate</title>
<title level="j" type="abbreviated">J. clim.</title>
<idno type="ISSN">0894-8755</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Anthropogenic factor</term>
<term>Atmospheric chemistry</term>
<term>Biogenic factor</term>
<term>Century 21st</term>
<term>Dynamical climatology</term>
<term>Forecast model</term>
<term>General circulation models</term>
<term>Ocean-atmosphere model</term>
<term>Pollutant emission</term>
<term>climate modification</term>
<term>digital simulation</term>
<term>global change</term>
<term>ozone</term>
<term>troposphere</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Changement planétaire</term>
<term>Modification climat</term>
<term>Troposphère</term>
<term>Chimie atmosphérique</term>
<term>Ozone</term>
<term>Modèle prévision</term>
<term>Siècle 21eme</term>
<term>Simulation numérique</term>
<term>Modèle circulation générale</term>
<term>Modèle atmosphère océan</term>
<term>Emission polluant</term>
<term>Facteur anthropique</term>
<term>Facteur biogène</term>
<term>Climatologie dynamique</term>
<term>Modèle ECHAM5</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">A global chemical transport model of the atmosphere [the Model for Ozone and Related Tracers, version 2 (MOZART-2)] driven by prescribed surface emissions and by meteorological fields provided by the ECHAM5/Max Planck Institute Ocean Model (MPI-OM-1) coupled atmosphere-ocean model is used to assess how expected climate changes (2100 versus 2000 periods) should affect the chemical composition of the troposphere. Calculations suggest that ozone changes resulting from climate change only are negative in a large fraction of the troposphere because of enhanced photochemical destruction by water vapor. In the Tropics, increased lightning activity should lead to larger ozone concentrations. The magnitude of the climate-induced ozone changes in the troposphere remains smaller than the changes produced by enhanced anthropogenic emissions when the Special Report on Emission Scenarios (SRES) A2P is adopted to describe the future evolution of these emissions. Predictions depend strongly on future trends in atmospheric methane levels, which are not well established. Changes in the emissions of NOx by bacteria in soils and of nonmethane hydrocarbons by vegetation associated with climate change could have a significant impact on future ozone levels.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0894-8755</s0>
</fA01>
<fA03 i2="1">
<s0>J. clim.</s0>
</fA03>
<fA05>
<s2>19</s2>
</fA05>
<fA06>
<s2>16</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Impact of climate change on the future chemical composition of the global troposphere</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>BRASSEUR (Guy P.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>SCHULTZ (Martin)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>GRANIER (Claire)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>SAUNOIS (Marielle)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>DIEHL (Thomas)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>BOTZET (Michael)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>ROECKNER (Erich)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>WALTERS (Stacy)</s1>
</fA11>
<fA14 i1="01">
<s1>Max Planck Institute for Meteorology</s1>
<s2>Hamburg</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>8 aut.</sZ>
</fA14>
<fA20>
<s1>3932-3951</s1>
</fA20>
<fA21>
<s1>2006</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>9644B</s2>
<s5>354000133590630090</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2006 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>1 p.3/4</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>06-0480247</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of climate</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>A global chemical transport model of the atmosphere [the Model for Ozone and Related Tracers, version 2 (MOZART-2)] driven by prescribed surface emissions and by meteorological fields provided by the ECHAM5/Max Planck Institute Ocean Model (MPI-OM-1) coupled atmosphere-ocean model is used to assess how expected climate changes (2100 versus 2000 periods) should affect the chemical composition of the troposphere. Calculations suggest that ozone changes resulting from climate change only are negative in a large fraction of the troposphere because of enhanced photochemical destruction by water vapor. In the Tropics, increased lightning activity should lead to larger ozone concentrations. The magnitude of the climate-induced ozone changes in the troposphere remains smaller than the changes produced by enhanced anthropogenic emissions when the Special Report on Emission Scenarios (SRES) A2P is adopted to describe the future evolution of these emissions. Predictions depend strongly on future trends in atmospheric methane levels, which are not well established. Changes in the emissions of NOx by bacteria in soils and of nonmethane hydrocarbons by vegetation associated with climate change could have a significant impact on future ozone levels.</s0>
</fC01>
<fC02 i1="01" i2="2">
<s0>001E02D10</s0>
</fC02>
<fC02 i1="02" i2="2">
<s0>001E02F</s0>
</fC02>
<fC03 i1="01" i2="2" l="FRE">
<s0>Changement planétaire</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="2" l="ENG">
<s0>global change</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="2" l="SPA">
<s0>Cambio planetario</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="2" l="FRE">
<s0>Modification climat</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="2" l="ENG">
<s0>climate modification</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="2" l="FRE">
<s0>Troposphère</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="2" l="ENG">
<s0>troposphere</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Chimie atmosphérique</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Atmospheric chemistry</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="2" l="FRE">
<s0>Ozone</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="2" l="ENG">
<s0>ozone</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="2" l="SPA">
<s0>Ozono</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Modèle prévision</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Forecast model</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Modelo previsión</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Siècle 21eme</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Century 21st</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Siglo 21</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="2" l="FRE">
<s0>Simulation numérique</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="2" l="ENG">
<s0>digital simulation</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="2" l="SPA">
<s0>Simulación numérica</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Modèle circulation générale</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>General circulation models</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Modèle atmosphère océan</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Ocean-atmosphere model</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Emission polluant</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Pollutant emission</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Emisión contaminante</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Facteur anthropique</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Anthropogenic factor</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Factor antrópico</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Facteur biogène</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Biogenic factor</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Factor biógeno</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Climatologie dynamique</s0>
<s5>31</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Dynamical climatology</s0>
<s5>31</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Climatología dinámica</s0>
<s5>31</s5>
</fC03>
<fC03 i1="15" i2="2" l="FRE">
<s0>Modèle ECHAM5</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fN21>
<s1>317</s1>
</fN21>
</pA>
</standard>
<server>
<NO>PASCAL 06-0480247 INIST</NO>
<ET>Impact of climate change on the future chemical composition of the global troposphere</ET>
<AU>BRASSEUR (Guy P.); SCHULTZ (Martin); GRANIER (Claire); SAUNOIS (Marielle); DIEHL (Thomas); BOTZET (Michael); ROECKNER (Erich); WALTERS (Stacy)</AU>
<AF>Max Planck Institute for Meteorology/Hamburg/Allemagne (1 aut., 2 aut., 3 aut., 4 aut., 5 aut., 6 aut., 7 aut.); National Center for Atmospheric Research/Boulder, Colorado/Etats-Unis (8 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Journal of climate; ISSN 0894-8755; Etats-Unis; Da. 2006; Vol. 19; No. 16; Pp. 3932-3951; Bibl. 1 p.3/4</SO>
<LA>Anglais</LA>
<EA>A global chemical transport model of the atmosphere [the Model for Ozone and Related Tracers, version 2 (MOZART-2)] driven by prescribed surface emissions and by meteorological fields provided by the ECHAM5/Max Planck Institute Ocean Model (MPI-OM-1) coupled atmosphere-ocean model is used to assess how expected climate changes (2100 versus 2000 periods) should affect the chemical composition of the troposphere. Calculations suggest that ozone changes resulting from climate change only are negative in a large fraction of the troposphere because of enhanced photochemical destruction by water vapor. In the Tropics, increased lightning activity should lead to larger ozone concentrations. The magnitude of the climate-induced ozone changes in the troposphere remains smaller than the changes produced by enhanced anthropogenic emissions when the Special Report on Emission Scenarios (SRES) A2P is adopted to describe the future evolution of these emissions. Predictions depend strongly on future trends in atmospheric methane levels, which are not well established. Changes in the emissions of NOx by bacteria in soils and of nonmethane hydrocarbons by vegetation associated with climate change could have a significant impact on future ozone levels.</EA>
<CC>001E02D10; 001E02F</CC>
<FD>Changement planétaire; Modification climat; Troposphère; Chimie atmosphérique; Ozone; Modèle prévision; Siècle 21eme; Simulation numérique; Modèle circulation générale; Modèle atmosphère océan; Emission polluant; Facteur anthropique; Facteur biogène; Climatologie dynamique; Modèle ECHAM5</FD>
<ED>global change; climate modification; troposphere; Atmospheric chemistry; ozone; Forecast model; Century 21st; digital simulation; General circulation models; Ocean-atmosphere model; Pollutant emission; Anthropogenic factor; Biogenic factor; Dynamical climatology</ED>
<SD>Cambio planetario; Ozono; Modelo previsión; Siglo 21; Simulación numérica; Emisión contaminante; Factor antrópico; Factor biógeno; Climatología dinámica</SD>
<LO>INIST-9644B.354000133590630090</LO>
<ID>06-0480247</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Musique/explor/MozartV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000149 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000149 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Musique
   |area=    MozartV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:06-0480247
   |texte=   Impact of climate change on the future chemical composition of the global troposphere
}}

Wicri

This area was generated with Dilib version V0.6.20.
Data generation: Sun Apr 10 15:06:14 2016. Site generation: Tue Feb 7 15:40:35 2023